Entrada publicada originalmente en La Ciencia y sus Demonios.
El mundo cuántico está repleto de comportamientos y sucesos que escapan, no ya a la intuición, sino en gran medida a la comprensión de los mismos. Einstein renegó de ese mundo complejo y extraño, y dedicó muchos esfuerzos a intentar derrocar la teoría que él mismo contribuyó a crear (gracias al efecto fotoeléctrico). La paradoja EPR probablemente fuese uno de sus intentos más conocidos y casi exitosos para ello.
Pero lo cierto es que no lo consiguió. La mecánica cuántica se ha mantenido imbatible ante los ataques que ha sufrido, simplemente porque explica lo que ocurre en la realidad. El problema es interpretar esos resultados, entender qué significan realmente esos experimentos. En esta entrada hablaremos de uno de los efectos cuánticos más extraños, más útiles y peor explicados (a nivel divulgativo) de la física cuántica. El efecto túnel.
En pocas palabras, el efecto túnel permite que un electrón (o partícula cuántica) penetre en y atraviese una zona que, en principio, estaría prohibida. ¿Y a qué nos referimos con esto? Cuando decimos que la zona está prohibida para el electrón, nos referimos a que el electrón no tiene suficiente energía cinética (la que tiene debido a su velocidad, por hacer un análogo clásico) para atravesar esa zona, porque hay un potencial eléctrico, por ejemplo, que debería impedir su paso por ahí. Por poner un ejemplo más visual: supongamos que tenemos un cable conectado a una pila y una bombilla, formando un circuito, todo en el vacío, sin aire.
Imaginemos que la bombilla es una bombilla especial, de super-mega-bajo consumo, de tal manera que con que un solo electrón atraviese el filamento, ya se iluminaría. Entonces cortamos un trocito de cable, de forma que la bombilla se apaga. Si pusiésemos los dos trozos de cable muy cerca, pero sin tocarse, la física clásica nos diría que no pasarían electrones a través del vacío, de forma que la bombilla no se encendería.
Sin embargo, según las leyes de la mecánica cuántica, el electrón podría pasar a través del vacío, saltando de uno a otro y pasando por esa "zona prohibida" en la que no hay material conductor por el que moverse. Ese es precisamente el efecto túnel.¿Y podríamos ver que se enciende la bombilla? Bueno, pues realmente no por varios motivos. El primero es que el efecto túnel no se produce siempre: como en todos los efectos cuánticos, estamos trabajando con probabilidades, por lo tanto, podremos calcular la probabilidad de que el electrón atraviese el vacío, pero no ocurrirá con todos los electrones que pasen por el cable, así que no se llegaría a encender la bombilla de forma continua.
Por otro lado, este efecto depende de manera crítica de la distancia que tiene que atravesar el electrón, del ancho de esa distancia prohibida. La dependencia es exponencial decreciente con la distancia, esto es, que en cuanto aumenta la distancia la probabilidad de que ocurra disminuye exponencialmente.
Matemáticamente (y que nadie se asuste con la fórmula) se puede poner como e-2ks donde k esta relacionado con el momento del electrón (algo así como su velocidad) y S es la distancia que tiene que atravesar, es decir, el tamaño del espacio "prohibido" que debe superar. Este comportamiento exponencial hace que observar este efecto sea realmente difícil.
Matemáticamente (y que nadie se asuste con la fórmula) se puede poner como e-2ks donde k esta relacionado con el momento del electrón (algo así como su velocidad) y S es la distancia que tiene que atravesar, es decir, el tamaño del espacio "prohibido" que debe superar. Este comportamiento exponencial hace que observar este efecto sea realmente difícil.
Ahora uno se pregunta: ¿cuándo se produce, cómo se descubrió, cómo podemos observarlo?
Pues bien, se produce a nivel microscópico, lo que significa que no podemos observarlo de forma directa (el ejemplo anterior era una idealización, y no existen bombillas tan sensibles al paso de los electrones, ni siquiera en Ikea). De hecho, para observarlo (más exactamente, medirlo) experimentalmente, hubo que esperar al microscopio de efecto túnel en 1981.
En cuanto a cómo se descubrió, puedo decir que es una consecuencia de la ecuación de Schrödinger, y el primero que lo predijo fue Richard Feynman. Esta ecuación es la más básica que uno puede encontrar para predecir el comportamiento de un electrón, y su solución nos proporciona una fórmula para determinar la probabilidad de que una partícula se encuentre en un lugar determinado. Cuando uno la resuelve para el caso en el que hay una barrera de potencial, o zona prohibida para el electrón, entre dos zonas permitidas (el ejemplo del cable cortado), obtenemos una probabilidad distinta de cero de que atraviese de uno a otro. Es decir, el efecto túnel. No voy a entrar en detalles matemáticos, porque creo que sólo van a confundir más que ayudar, y aquél que quiera profundizar puede consultar la bibliografía.
Ahora bien, creo que puede ser difícil imaginar un ejemplo de una barrera de potencial. De hecho, este es uno de los motivos por los que creo que este efecto está mal explicado a nivel divulgativo. Generalmente, lo que suelen hacer los divulgadores (lo que yo he leído), es compararlo con el caso de una pelota y una colina. Veamos: suponen que lanzamos una pelota colina arriba. Si no le damos suficiente impulso, la pelota no tendrá energía para subir a lo alto de la misma, y luego bajar debido a la gravedad, así que nunca llegará al otro lado. Ahora bien, dicen, cuando tratamos el mundo cuántico, hay una probabilidad no nula de que la pelota pase "a través de la colina" y aparezca en el otro lado, aunque no tuviese energía suficiente.
El problema que le veo a esta explicación, es que conduce a un error que he visto que comete mucha gente, y que yo mismo cometí antes de estudiar la carrera. A saber: uno cree que la cuántica permite que la materia se atraviese, de tal forma que si pudiésemos producir ese efecto a nivel macroscópico, podríamos atravesar paredes y cosas así. ERROR.
En realidad la cuántica no dice que la materia pueda atravesarse. El símil no me parece correcto, porque una barrera de potencial no tiene masa. Sería más correcto decir que es un campo de fuerza que impediría que la partícula pasase por allí. Estoy seguro que el que propuso ese ejemplo (que no recuerdo en qué libro lo leí, lo siento), estaba pensando en el potencial gravitatorio que existe entre la parte baja y la alta de una colina, pero la gente que no está entrenada, fácilmente puede confundir la colina en sí y su materia o masa, con el potencial, que es lo único que nos interesaría en la explicación.
Pensándolo bien, podría hacerse un ejemplo con los Jedis. Podríamos imaginar que Han Solo, que no es Jedi, tiene la habilidad de sufrir efecto tunel en todo su cuerpo al mismo tiempo. Si un Jedi generase un campo de fuerza a su alrededor para "encarcelarle" (un Jedi del Lado Oscuro, claro), Han Solo, cuál electrón de 85 kg, podría atravesar el campo y salir, libre, al otro lado, gracias al efecto túnel. Eso es esencialmente lo que hacen los electrones en los microscopios de efecto túnel, y eso es lo que nos dice que deben hacer, la ecuación de Schrödinger.
Después de todo este rollo, alguien se puede preguntar que para que sirve esto, además de lo puramente académico. Como ya he ido comentando, existe un aparato que se llama Microscopio de Efecto Túnel, cuya invención les supuso el Nobel a Gerd Binning y Heini Rohrer. ¿Cómo funciona? Consiste en una punta metálica extremadamente pequeña, que se acerca al material que queremos observar hasta algo menos de 5 amstrongs. Entre la punta y el material, que debe ser conductor o semiconductor, se crea una pequeña diferencia de potencial (la barrera propiamente dicha) y se mide la microcorriente que se genera. Entonces, como sabemos de qué manera depende el efecto túnel de la distancia, podemos calcular esa distancia entre el último átomo de la punta, y la muestra. Así, haciendo que la punta se mueva por la superficie barriendola, obtenemos un mapa en relieve de la misma. Las imágenes tienen resoluciones atómicas. Además, la mayoría de STM permiten, cambiando la diferencia de potencial y haciéndola suficientemente fuerte, manipular átomos a nivel individual, tal y como hicieron en IBM. Pero en esto último, no interviene el efecto túnel.
Primera imagen generada y obtenida con un microscopio de efecto túnel
por los laboratorios de IBM.
Dejo algunos enlaces a otros blogs y páginas que hablan también de este sorprendente efecto, y que seguro que explican más cosas que yo no he hecho. Así que no os quedéis con la curiosidad sin satisfacer:
Microscopio de efecto túnel:
Efecto Túnel:
Aquí no queda más que poner algo de bibliografía más formal, por si alguien quiere consultarla:
- Física Cuántica. Carlos Sánchez del Río. Un clásico que requiere conocimientos algo avanzados de matemáticas y algo de física.
- Curso abreviado de física teórica, vol. 2. Landau y Lifshitz. Algo más avanzado que el anterior.
Varios:
No hay comentarios:
Publicar un comentario